Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover.
نویسندگان
چکیده
Heating of batch tubular reactors with fluidized sand baths and with microwaves resulted in distinctive sugar yield profiles from pretreatment and subsequent enzymatic hydrolysis of corn stover at the same time, temperature, and dilute sulfuric acid concentration combinations and hydrothermal pretreatment conditions. Microwave heated pretreatment led to faster xylan, lignin, and acetyl removal as well as earlier xylan degradation than sand baths, but maximum sugar recoveries were similar. Solid state CP/MAS NMR revealed that microwave heating was more effective in altering cellulose structural features especially in breakdown of amorphous regions of corn stover than sand bath heating. Enzymatic hydrolysis of pretreated corn stover was improved by microwave heating compared to sand bath heating. Mechanisms were proposed to explain the differences in results for the two systems and provide new insights into pretreatment that can help advance this technology.
منابع مشابه
Comparison of the Effectiveness of a Fluidized Sand Bath and a Steam Chamber for Reactor Heating
Both fluidized sand baths and steam chambers have been used to heat laboratory reactors, in particular for studies of biomass pretreatment. In this study, several aspects of the heating performance of these devices were compared: time to heat reactors to reaction temperature, the stability of reactor temperature, and the convection coefficient. The convection coefficient was determined using co...
متن کاملA novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form mono...
متن کاملEffect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lign...
متن کاملBioethanol Fermentation from Non-treated and Pretreated Corn Stover Using Aspergillus Oryzae
A comparison was studied for non-treated and pretreated corn stover with dilute alkaline peroxide and dilute acid treatment respectively for bioethanol production by simultaneous saccharification and fermentation (SSF) process in a continuous stirred batch bioreactor using fungi Aspergillus oryzae. The optimum parameters for bioethanol fermentation were: time, 48 h; pH, 6.0; temperature, 50oC; ...
متن کاملFlow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis
Until recently traditional heating in organic chemistry has been done with oil heating baths or using electric heat exchangers. With the advent of microwave equipment, heating by microwaves was rapidly introduced as standard method in organic chemistry laboratories, mainly because of the convenient possibility to operate at high temperature accompanied by accelerated reaction rates. In the pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 102 10 شماره
صفحات -
تاریخ انتشار 2011